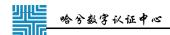

碳足迹评价报告

报告编制单位:哈兮数字

评价报告签发日期: 2023年06月01日


产品碳足迹评价信息表

评价单位	, ,	女字技术有限	地址		市余杭区五常街道溪沁街	
		·司 		258	号 1 幢 8 楼 804 室	
联系人	李	毅	联系方式		18263676633	
产品制造商		星密封材料股 限公司	地址	萧ι	山区浦阳镇桃源村	
	产品名称			石墨密封	材料及制品	
产品	系列/规格/型	号			吨	
				PAS 2	2050:2011	
			《商品和服	务在生命周	用用内的温室气体排放评价	
				规	2范》	
			ISO14040:2006			
	核算依据		《环境管理 生命周期评价原则与框架》			
			ISO 14044:2006			
			《环境管理 生命周期评价要求与指南》			
			ISO 14067:2018			
			《温室气体产品碳足迹量化的要求和指南》			
<u>'-</u>	上 命周期阶段		从摇篮到大门			
产品	碳足迹功能单	位位	1.0 t 石墨密封材料及制品			
碳足	碳足迹(kg CO ₂ -eq)				100.49	
编写	周为	签名	周为	7 日期	2023年06月01日	
复核	李毅	签名	李毅	日期	2023年06月01日	

目录

产品碳足迹评价信息表	2
1. 生命周期评价与产品碳足迹	2
2. 目标与范围定义	2
2.1 评价目的	
2.2 评价范围	
2.2.2 评价指标	3
2.2.3 系统边界	
2.4 数据质量要求	
2.5 软件和数据库	
3. 数据收集	6
3.1 原辅材料	
3.2生产过程 3.3运输	
3.4包装	7
4产品碳足迹结果与分析	7
5 生命周期解释	8
5.1 假设和局限性	
5.2 数据质量评价	
5.2.2 完整性	
5.2.3 可靠性 5.2.4 一致性	
6. 结论与建议	
6.1 结论	
6.2 建议	
附录 1 产品排放系数取值情况	
附录 2 运输排放系数	11

1. 生命周期评价与产品碳足迹

生命周期评价方法(Life Cycle Assessment, LCA)是系统化、定量化评价产品生命周期过程中资源环境效率的标准方法,它通过对产品上下游生产与消费过程的追溯,帮助生产者识别环境问题所产生的阶段,并进一步规避其在产品不同生命周期阶段和不同环境影响类型之间进行转移。国内外很多行业都开展了产品 LCA 评价,用于行业内企业的对标和改进、行业外部的交流,并为行业政策制定提供参考依据。

产品碳足迹(Carbon Footprint of a Product, CFP)是指某个产品在其生命周期过程中所释放的直接和间接的温室气体总量,即从原材料开采、产品生产(或服务提供)、分销、使用到最终再生利用、处置等多个阶段的各种温室气体排放的累加。产品碳足迹已经成为一个行之有效的定量指标,用于衡量企业的绩效,管理水平和产品对气候变化的影响大小。

2. 目标与范围定义

2.1 评价目的

产品生命周期评价和碳足迹评价作为生态设计和绿色制造实施的基础,近年来已经成为人们研究和关注的热点。开展生命周期评价和碳足迹评价能够最大限度实现资源节约和温室气体减排,对于行业绿色发展和产业升级转型、应对出口潜在的贸易壁垒而言,都是很有价值和意义的。

本项目按照 ISO14040:2006《环境管理 生命周期评价原则与框架》、ISO 14044:2006《环境管理 生命周期评价要求与指南》、ISO 14067:2018《温室气体产品碳足迹量化的要求和指南》、PAS 2050:2011《商品和服务在生命周期内的温室气体排放评价规范》的要求,建立石墨密封材料及制品从摇篮到大门的生命周期模型,编写碳足迹评价报告,结果和相关分析可用于以下目的:

- 得到产品的生命周期碳足迹指标结果,用于企业比较不同工艺下产品的碳排放情况,选择更为环境友好的工艺技术。
- 报告可用于下游客户或终端消费者根据产品的生命周期碳足迹指标选择更 为低碳的产品。
- 报告可用于市场宣传,展示本企业产品在应对气候变化和温室气体排放管理方面的优势。

2.2 评价范围

2.2.1 功能单位

本次研究的功能单位定义为: 1.0t 石墨密封材料及制品,产品基本信息如表 1-1 所示。

表 1-1 产品详情表

基本信息	内容
单位产品质量	1.0t
数据收集期间内产量	900.0t

2.2.2 评价指标

本项目通过对碳足迹指标的评价,帮助企业发现减少产品温室气体排放、 实现节能减排的途径,为企业评价和实施有针对性的改进措施提供依据。同时, 产品碳足迹评价也是一种促进绿色生产和消费的重要手段。

碳足迹的计算结果为产品生命周期各种温室气体总量排放,用二氧化碳当量(CO_2 -eq)表示,单位为 $kgCO_2$ -eq 或者 gCO_2 -eq。常见的温室气体包括二氧化碳(CO_2)、甲烷(CH_4)、氧化亚氮(N_2O)、氢氟碳化物(HFC_8)、全氟化碳(PFC_8)、六氟化硫(SF_6)等。

2.2.3 系统边界

本产品为石墨密封材料及制品,产品的生命周期系统边界属从"从摇篮到大门"的类型,评价的系统边界包括上游原辅料和能源的生产和运输阶段、产品生产和包装阶段。

2.3 数据取舍规则

在选定系统边界和指标的基础上,应规定一套数据取舍准则,忽略对评价结果影响不大的因素,从而简化数据收集和评价过程。本研究取舍准则如下:

- 1)原则上可忽略对碳足迹结果影响不大的能耗、原辅料、使用阶段耗材等消耗。例如,小于产品重量1%的普通消耗可忽略,而含有稀贵金属(如金银铂钯等)或高纯物质(如纯度高于99.99%)的物耗小于产品重量0.1%时可忽略,但总共忽略的物耗推荐不超过产品重量的5%;
- 2) 道路与厂房等基础设施、生产设备、厂区内人员及生活设施的消耗和排放,可忽略:

3

3)低价值废物作为原料,如粉煤灰、矿渣、秸秆、生活垃圾等,忽略其上游生产数据。

2.4 数据质量要求

数据质量评价的目的是判断碳足迹评价结果和结论的可信度,并指出提高数据质量的关键因素。本研究数据质量可从四个方面进行管控和评价,即代表性、完整性、可靠性、一致性。

1)数据代表性:包括地理代表性、时间代表性、技术代表性三个方面。

地理代表性: 说明数据代表的国家或特定区域,这与研究结论的适用性密切相关。

时间代表性:应优先选取与研究基准年接近的企业、文献和背景数据库数据。

技术代表性:应描述生产技术的实际代表性。

2)数据完整性:包括产品模型完整性和数据库完整性两个方面。

模型完整性:依据系统边界的定义和数据取舍准则,产品生命周期模型需包含所有主要过程。产品生命周期模型尽量反映产品生产的实际情况,对于重要的原辅料(对碳足迹指标影响超过5%的物料)应尽量调查其生产过程;在无法获得实际生产过程数据的情况下,可采用背景数据,但需对背景数据来源及采用依据进行详细说明。未能调查的重要原辅料需在报告中解释和说明。

背景数据库完整性:背景数据库一般至少包含一个国家或地区的数百种主要能源、基础原材料、化学品的开采、制造和运输过程,以保证背景数据库自身的完整性。

3) 可靠性: 包括实景数据可靠性、背景数据可靠性、数据库可靠性。

实景数据可靠性:对于主要的原辅料消耗、能源消耗和运输数据应尽量采用企业实际生产记录数据。所有数据将被详细记录从相关的数据源和数据处理算法。采用经验估算或文献调研所获取的数据应在报告中解释和说明。

背景数据可靠性: 重要物料和能耗的上游生产过程数据优先选择代表原产 地国家、相同生产技术的公开基础数据库,数据的年限优先选择近年数据。在 没有符合要求的背景数据的情况下,可以选择代表其他国家、代表其他技术的 数据作为替代,并应在报告中解释和说明。

数据库可靠性:背景数据库需采用来自本国或本地区的统计数据、调查数

据和文献资料,以反映该国家或地区的能源结构、生产系统特点和平均的生产技术水平。

4)一致性: 所有实景数据(包括每个过程消耗与排放数据)应采用一致的统计标准,即基于相同产品产出、相同过程边界、相同数据统计期。若存在不一致的情况,应 在报告中解释和说明。

2.5 软件和数据库

本项目采用了大风碳足迹平台,结合中国产品全生命周期温室气体排放系数集 CPCD、Ecoinvent 温室气体排放数据库、欧洲全生命周期评价数据库 ELCD、中国全生命周期评价数据库 CLCD等建立产品生命周期模型并计算分析,部分原辅料数据通过查阅文献资料获得。其生命周期过程使用的排放系数来源见表 2-1,具体取值见附录 1。

大风碳足迹平台是哈兮数字云团队自主研发的一站式碳足迹服务平台,具备数据收集、产品碳排放模型构建、产品碳足迹核算、产品碳足迹认证以及后续绿色营销等一系列功能,通过数字化技术实现了一站式在线服务。大风碳足迹平台兼容国内外主流的碳排放因子数据库,包括 CPCD、Ecoinvent、ELCD和 CLCD等。

表 2-1 背景数据来源表

清单名称	所属过程	碳排放因子来源
可膨胀石墨	原辅材料	CPCD
木料	包装	CPCD
纸箱	包装	CPCD

包装膜	包装	CPCD

3. 数据收集

产品生产数据统计时段为 2022/01/01 至 2022/12/31, 在此期间, 石墨密封 材料及制品的产量为 900.0 t, 以下收集数据按该批次生产消耗量及排放量进行统计。

3.1 原辅材料

原辅材料的输入包括:可膨胀石墨。详细清单汇总如表 3-1 所示。

表 3-1 原辅材料清单数据表

类型	清单名称	数量	单位	备注	数据来源
原材料/物料	可膨胀石墨	1.3	t		CPCD

原辅材料运输信息如表 3-2 所示。

表 3-2 原辅材料运输信息表

清单名称	起点	终点	运输距离	运输重量	运输类型	备注
可膨胀石墨	包头	萧山	1950km	1.3t	公路运输	

3.2 生产过程

生产过程的输入包括: 电力、天然气。详细清单汇总如表 3-3 所示。

表 3-3 生产过程清单数据表

类型	清单名称	数量	单位	备注	数据来源
能源	电力	1733.0	kWh		调查数据
能源	天然气	806.3	m³		调查数据

3.3 运输

运输的输入包括: 木料、纸箱运输、包装膜运输、可膨胀石墨运输。详细清单汇总如表 3-4 所示。

表 3-4 运输清单数据表

类型	清单名称	数量	单位	备注	数据来源
包装	木料	1.2	t*km		调查数据
包装	纸箱运输	0.2	t*km		调查数据
包装	包装膜运输	0.075	t*km		调查数据
原材料/物料	可膨胀石墨运输	2535.0	t*km		调查数据

运输运输信息如表 3-5 所示。

表 3-5 运输运输信息表

清单名称	起点	终点	运输距离	运输重量	运输类型	备注
包装膜运输	杭州	萧山	50.0km	1.5kg	货车运输(8t)-柴油	

纸箱运输	萧山	萧山	10.0km	20.0kg	货车运输(8t)-柴油	
木料	萧山	萧山	12.0km	100.0kg	货车运输(10t)-柴油	

3.4 包装

包装的输入包括: 木料、纸箱、包装膜。详细清单汇总如表 3-7 所示。

表 3-7 包装清单数据表

类型	清单名称	数量	单位	备注	数据来源
包装	木料	100.0	kg		CPCD
包装	纸箱	20.0	kg		CPCD
包装	包装膜	1.5	kg		CPCD

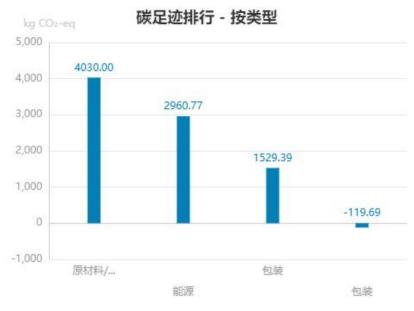
包装运输信息如表 3-8 所示。

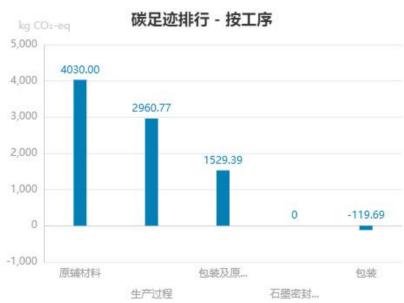
表 3-8 包装运输信息表

清单名称	起点	终点	运输距离	运输重量	运输类型	备注
包装膜	杭州	萧山	50.0km	1.5kg	货车运输(8t)-柴油	
纸箱	萧山	萧山	10.0km	20.0kg	货车运输(8t)-柴油	
木料	萧山	萧山	12.0km	100.0kg	货车运输(10t)-柴油	

4产品碳足迹结果与分析

根据企业提供的产品原辅材料清单、收集的生产过程的能源消耗数据和部分原料的文献调研数据,通过大风碳足迹平台建立了石墨密封材料及制品的生命周期模型,建模结果表明石墨密封材料及制品生命周期碳排放量为8400.49 kg CO₂-eq/Item(s),各项清单对碳足迹的贡献结果如表4-1 所示,其中各物料运输过程的碳排放量已计入该物料的 GWP 结果中。


表 4-1 石墨密封材料及制品的生命周期碳足迹贡献结果


清单名称	GWP (kg CO ₂ -eq)	贡献占比(%)	所属过程
可膨胀石墨	4030.0	47.97	原辅材料
天然气	1741.61	20.73	生产过程
可膨胀石墨运输	1527.62	18.18	运输
电力	1219.17	14.51	生产过程
纸箱	32.1	0.38	包装
包装膜	2.81	0.03	包装
木料	1.45	0.02	运输
纸箱运输	0.24	0.0	运输
包装膜运输	0.09	0.0	运输
木料	-154.6	-1.84	包装

由以上结果可知,对产品碳足迹结果贡献最大的是原辅材料的可膨胀石墨, 占比 47.97%、其次是生产过程的天然气,占比 20.73%、运输的可膨胀石墨运

输,占比18.18%。

5 生命周期解释

5.1 假设和局限性

本次产品LCA 报告的实景数据中石墨密封材料及制品的生产过程数据主要来源于企业调研数据,背景数据来自 CPCD、Ecoinvent、ELCD、CLCD等数据库,部分过程的数据采用文献数据。受项目调研时间及供应链管控力度限制,未调查重要原料的实际生产过程,计算结果与实际供应链的环境表现有一定偏差。建议在调研时间和数据可得的情况下,进一步调研主要外购原材料的生产

过程数据,有助于提高数据质量,为企业在供应链上推动协同改进提供数据支持。

5.2 数据质量评价

5.2.1 代表性

本次报告中各单元过程实景数据发生在数据代表特定生产企业的一般水平。 实景数据采用 2022/01/01 至 2022/12/31 的企业生产统计数据, 背景数据库数据 采用从 2000年到 2020年的数据。

5.2.2 完整性

(1) 模型完整性

本次报告中产品生命周期模型范围包含上游原辅料和能源的生产和运输阶 段、产品生产和包装阶段,满足本研究对系统边界的定义。产品生产过程中所 有原料消耗均被考虑在内。

(2) 背景数据库完整性

本研究所使用的背景数据库包括 CPCD、Ecoinvent、ELCD 和 CLCD 数据 库。以上数据库包含了主要能源、基础原材料、资源的开采、制造和运输过程, 满足背景数据库完整性的要求。

5.2.3 可靠性

(1) 实景数据可靠性

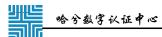
本次报告中, 各实景过程原料和能源消耗数据均来自企业统计台账表或实 测数据,数据可靠性高。

(2) 背景数据可靠性

本研究中数据库数据采用国际标准的统计数据、调查数据和文献资料,数 据代表了中国生产技术及市场平均水平,数据收集过程的原始数据和算法均被 完整记录, 使得数据收集过程随时可重复、可追溯。

5.2.4 一致性

本研究所有实景数据均采用一致的统计标准,即按照单元过程单位产出讲 行统计。所有背景数据采用一致的统计标准,其中相关数据库在开发过程中建 立了统一的核心模型,并进行详细文档记录,确保了数据收集过程的流程化和一 致性。


6. 结论与建议

9

6.1 结论

通过对的产品石墨密封材料及制品进行全生命周期分析,可知: 1.0 t 石墨密封材料及制品的生命周期碳足迹为 8400.49 kg CO₂-eq。其碳排放量主要来自于可膨胀石墨(47.97%)、天然气(20.73%)、可膨胀石墨运输(18.18%)的消耗,整个生产过程中排放量较高的阶段包括原辅材料(47.97%)、生产过程(35.24%)、运输(18.2%)。

6.2 建议

附录1产品排放系数取值情况

清单名称	排放系数	排放系数单碳排放因子 位 来源		取值说明		
可膨胀石墨	3.1	kgCO ₂ e/kg	CPCD	人造石墨,胶态或半胶态石墨,以石墨或其 他半成品状态的碳为基料的制品		
木料	-1.55	tCO ₂ e/t CPCD		木片或小木块		
纸箱	1.6	kgCO ₂ e/kg	CPCD	瓦楞纸及纸板		
包装膜	1.87	tCO ₂ e/t	CPCD	自行粘合的塑料板、片、薄膜、箔、带、条 及其他塑料平板		

附录 2 运输排放系数

运输工具	排放系数	排放系数单位	碳排放因子来源	取值说明
货车运输(8t)-柴油	0.6	kgCO ₂ -eq/ t·km	CPCD	柴油货车平均 (Diesel van average)
货车运输(10t)-柴油	0.6	kgCO ₂ -eq/ t·km	CPCD	柴油货车平均 (Diesel van average)

11